Diffusion polynomial frames on metric measure spaces

نویسندگان

  • M. Maggioni
  • H. N. Mhaskar
چکیده

We construct a multiscale tight frame based on an arbitrary orthonormal basis for the L2 space of an arbitrary sigma finite measure space. The approximation properties of the resulting multiscale are studied in the context of Besov approximation spaces, which are characterized both in terms of suitable K–functionals and the frame transforms. The only major condition required is the uniform boundedness of a summabilility operator. We give sufficient conditions for this to hold in the context of a very general class of metric measure spaces. The theory is illustrated using the approximation of characteristic functions of caps on a dumbell manifold, and applied to the problem of recognition of hand–written digits. Our methods outperforms comparable methods for semi–supervised learning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuous $k$-Fusion Frames in Hilbert Spaces

The study of the c$k$-fusions frames shows that the emphasis on the measure spaces introduces a new idea, although some similar properties with the discrete case are raised. Moreover, due to the nature of measure spaces, we have to use new techniques for new results. Especially, the topic of the dual of frames  which is important for frame applications, have been specified  completely for the c...

متن کامل

Frames and Homogeneous Spaces

Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Some Properties of Continuous $K$-frames in Hilbert Spaces

The theory of  continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory.  The $K$-frames were  introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of  $K$-frames, there are many differences between...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006